Le GAP et Rubik's Cube

Difficulté: 1/20 facile-

24 Fevr 2024

GAP GAP est un logiciel de calcul formel, il permet de calculer un certain nombre de caractéristiques du Rubik's Cube, du Pocket, du Skewb, ...
comme le nombre d'états, le nombre de J-conjugaison-classes, ...

Commentaire

Calcul le nombre d'états du Rubik's Cube


Autocollant numérotés

Voici un programme en GAP qui calcule le nombre d'états du Rubik's Cube :

Rubik's Cube :

# gap_rubik.txt # 5 6 7
# 4 H 8
# 3 2 1
#25 28 23|21 26 19|17 32 31|29 30 27
#38 G 36|12 A 10|34 D 40|16 P 14
#43 44 37|39 42 33|35 48 45|47 46 41
# 11 18 9
# 20 B 24
# 13 22 15

# Iso=le groupe isometrie du cube (48)
j1 := (6, 46, 18, 26)(8, 14, 24, 12)(38, 48, 36, 32)(2, 30, 22, 42)(16, 20, 10, 4)(28, 40, 44, 34)
(5, 45, 11, 17)(7, 13, 9, 3)(21, 31, 41, 35)(43, 33, 23, 29)(1, 25, 15, 37)(47, 39, 19, 27) ;

j2 := (6, 16, 22, 14)(8, 24, 20, 4)(38, 30, 40, 46)(2, 10, 18, 12)(28, 32, 48, 44)(34, 42, 36, 26)
(5, 31, 15, 43)(7, 45, 13, 25)(21, 19, 33, 39)(1, 35, 11, 23)(47, 41, 27, 29)(3, 17, 9, 37);

Iso := Group(j1,j2) ;

# Dep=le groupe isometrie+ du cube (24) ssg de Iso
d1 := (1,11)(2,18)(3,9)(4,24)(5,15)(6,22)(7,13)(8,20)(10,12)
(14,16)(17,37)(19,39)(21,33)(23,35)(25,45)(26,42)(27,47)(28,48)(29,41)
(30,46)(31,43)(32,44)(34,36)(38,40);

d2 := (1,15)(2,22)(3,13)(4,20)(5,11)(6,18)(7,9)(8,24)(10,16)(12,14)
(17,45)(19,47)(21,41)(23,43)(25,37)(26,46)(27,39)(28,44)(29,33)(30,42)
(31,35)(32,48)(34,40)(36,38);

d3 := (1,17,19)(2,32,10)(3,31,33)(4,40,42)
(5,45,39)(6,48,12)(7,35,21)(8,34,26)(9,23,29)(11,25,47)(13,43,41)
(14,22,44)(15,37,27)(16,18,28)(20,38,46)(24,36,30);

d4 := (1,35,11,23)(2,10,18,12)(3,17,9,37)(4,8,24,20)(5,31,15,43)
(6,16,22,14)(7,45,13,25)(19,33,39,21)(26,34,42,36)(27,29,47,41)
(28,32,48,44)(30,40,46,38) ;

Dep := Group(d1, d2,d3,d4) ;

# Pocket=le groupe Pocket (= Rubik sans arêtes)
#pH := (1,3,5,7)(17,21,25,29)(19,23,27,31) ;
#pB := (9,15,13,11)(33,45,41,37)(35,47,43,39);
#pA := (1,35,11,23)(17,9,37,3)(19,33,39,21);
#pP := (7,25,13,45)(29,27,41,47)(31,5,43 ,15);
#pG := (3,39,13,27)(21,11,41,5)(23,37,43,25);
#pD := (1,29,15,33)(17,31,45,35)(19,7,47,9);
#pPsi := (1,17,19);

# Rubik=le groupe du Rubik's Cube
pH := (2,4,6,8)(26,28,30,32) (1,3,5,7)(17,21,25,29)(19,23,27,31) ;
pB := (18,24,22,20)(42,48,46,44) (9,15,13,11)(33,45,41,37)(35,47,43,39);
pA := (2,34,18,36)(26,10,42,12) (1,35,11,23)(17,9,37,3)(19,33,39,21);
pP := (6,38,22,40)(30,14,46,16) (7,25,13,45)(29,27,41,47)(31,5,43 ,15);
pG := (4,12,20,14)(28,36,44,38) (3,39,13,27)(21,11,41,5)(23,37,43,25);
pD := (8,16,24,10)(32,40,48,34) (1,29,15,33)(17,31,45,35)(19,7,47,9);
pGamma := (2,26);
pPsi := (1,17,19);
pOmega := (2,8)(26,32);
ph := (10,36,14,40)(34,12,38,16);
pd := (2,30,22,42)(26,6,46,18);
pa := (4,32,24,44)(28,8,48,20);

LAMBDAPLUS := Group( pH, pB, pA, pP, pG, pD, pGamma, pPsi, pOmega ); LAMBDA := Group( pH, pB, pA, pP, pG, pD ); Print( "\n" ); Print( "|LAMBDA+| = ",Size( LAMBDAPLUS ), "\n" ); Print( "|LAMBDA| = ", Size( LAMBDA ) , "\n" ); Print( "N = ", 2 * 3 * 2 , "\n" ); Print( "|G+| = ", Factorial(12) * (2^12) * Factorial(8) * (3^8) , "\n" ); Print( "|G| = |G+|/N = ",( Factorial(12) * (2^12) * Factorial(8) * (3^8) ) / ( 2 * 3 * 2 ), "\n" );

1 2 3 [4] 5 6 7 8 9

Accueil

DMJ: 22/02/2024









Facile

Moyen

Difficile

Les Crazy et Circular

Les Bandages

Les Stars

Divers

Le MathsCubing

Quiz (Master Cube)