Le  GAP et Rubik's Cube
	     
      
      
        
			24
			Fevr
			2024
        
        
          GAP
 
 GAP est un logiciel de calcul formel, il permet de calculer un certain nombre de caractéristiques du Rubik's Cube, du Pocket, du Skewb, ...
GAP est un logiciel de calcul formel, il permet de calculer un certain nombre de caractéristiques du Rubik's Cube, du Pocket, du Skewb, ...
comme le nombre d'états, le nombre de J-conjugaison-classes, ... 
   
	    
       
      
      
      
      
      Calcul  le nombre de J-conjugaison classes du Rubik's Cube
	  
|  |  | 
| Autocollant numérotés |  | 
Voici un programme en GAP qui permet de calculer :
1) Le nombre de J-conjugaison-classes de Rubik's Cube
2) Le nombre de D-conjugaison-classes de Rubik's Cube
3) Le nombre de J-conjugaison-classes de Pocket
4) Le nombre de D-conjugaison-classes de Pocket
Programme 2 : 
#gap_J-rubik.txt
#         5  6  7
#         4  H  8
#         3  2  1
#25 28 23|21 26 19|17 32 31|29 30 27
#38 G  36|12 A  10|34 D  40|16 P  14
#43 44 37|39 42 33|35 48 45|47 46 41
#         11 18 9
#         20 B  24
#         13 22 15
# Iso=le groupe isometrie du cube (48)
j1 := (6, 46, 18, 26)(8, 14, 24, 12)(38, 48, 36, 32)(2, 30, 22, 42)(16, 20, 10, 4)(28, 40, 44, 34)
(5, 45, 11, 17)(7, 13, 9, 3)(21, 31, 41, 35)(43, 33, 23, 29)(1, 25, 15, 37)(47, 39, 19, 27) ;
j2 := (6, 16, 22, 14)(8, 24, 20, 4)(38, 30, 40, 46)(2, 10, 18, 12)(28, 32, 48, 44)(34, 42, 36, 26)
(5, 31, 15, 43)(7, 45, 13, 25)(21, 19, 33, 39)(1, 35, 11, 23)(47, 41, 27, 29)(3, 17, 9, 37);
Iso := Group(j1,j2) ; 
# Dep=le groupe isometrie+ du cube (24) ssg de Iso
d1 := (1,11)(2,18)(3,9)(4,24)(5,15)(6,22)(7,13)(8,20)(10,12)
        (14,16)(17,37)(19,39)(21,33)(23,35)(25,45)(26,42)(27,47)(28,48)(29,41)
        (30,46)(31,43)(32,44)(34,36)(38,40);
d2 := (1,15)(2,22)(3,13)(4,20)(5,11)(6,18)(7,9)(8,24)(10,16)(12,14)
        (17,45)(19,47)(21,41)(23,43)(25,37)(26,46)(27,39)(28,44)(29,33)(30,42)
        (31,35)(32,48)(34,40)(36,38);
d3 := (1,17,19)(2,32,10)(3,31,33)(4,40,42)
        (5,45,39)(6,48,12)(7,35,21)(8,34,26)(9,23,29)(11,25,47)(13,43,41)
        (14,22,44)(15,37,27)(16,18,28)(20,38,46)(24,36,30);
d4 :=  (1,35,11,23)(2,10,18,12)(3,17,9,37)(4,8,24,20)(5,31,15,43)
        (6,16,22,14)(7,45,13,25)(19,33,39,21)(26,34,42,36)(27,29,47,41)
        (28,32,48,44)(30,40,46,38) ;
				
Dep := Group(d1, d2,d3,d4) ;
# Rubik=le groupe du Rubik's Cube	
	
pH := (2,4,6,8)(26,28,30,32) (1,3,5,7)(17,21,25,29)(19,23,27,31) ;
pB := (18,24,22,20)(42,48,46,44) (9,15,13,11)(33,45,41,37)(35,47,43,39);
pA := (2,34,18,36)(26,10,42,12) (1,35,11,23)(17,9,37,3)(19,33,39,21);
pP := (6,38,22,40)(30,14,46,16) (7,25,13,45)(29,27,41,47)(31,5,43 ,15);
pG := (4,12,20,14)(28,36,44,38) (3,39,13,27)(21,11,41,5)(23,37,43,25);
pD := (8,16,24,10)(32,40,48,34) (1,29,15,33)(17,31,45,35)(19,7,47,9);
Rubik := Group(pH,pB,pA,pP,pG,pD); 
G := Rubik ;;
GG := "Rubik" ;;
J := Iso ;;
JJ := "J" ;;
# Pocket=le groupe Pocket (= Rubik sans arêtes)
#pH :=  (1,3,5,7)(17,21,25,29)(19,23,27,31) ;
#pB :=  (9,15,13,11)(33,45,41,37)(35,47,43,39);
#pA :=  (1,35,11,23)(17,9,37,3)(19,33,39,21);
#pP :=  (7,25,13,45)(29,27,41,47)(31,5,43 ,15);
#pG :=  (3,39,13,27)(21,11,41,5)(23,37,43,25);
#pD :=  (1,29,15,33)(17,31,45,35)(19,7,47,9);
#Pocket := Group(pH,pB,pA,pP,pG,pD);
#G := Pocket ;;
#GG := "Pocket" ;;
#J := Dep ;;
#JJ := "D" ;;
Jcjg := Sum(J,f -> Size(Centralizer(G,f))) / Size(J);;
Print("\n\n ",GG," = ", Size(G), "\n" );
Print("\n ",JJ,"-cjg = ", Jcjg, "\n" );
1 [2] 3 4 5 6 7 8 9 
Accueil
DMJ: 22/02/2024