Les ordres des formules et les quatrix

Défis, énigmes ...
Avatar de l’utilisateur
Morphocode
Crazy
Crazy
Homme
Balance
Messages : 784
Inscription : Lun 25/11/2013 17:06
Localisation : Paris
Contact :

Les ordres des formules et les quatrix

Message non lupar Morphocode » Dim 16/05/2021 17:44

Commeçons par donner 2 définitions:

Définition 1 : L'ordre d'une formule.
Une formule V est l'ordre d si on a : Vd = I
exemples::
H4 = I ==> H est l'ordre 4,
[DH]6 = I ==> [DH] est l'ordre 6.

Définition 2 : Un quatrix est un nombre entier qui s'écrit avec quatre chiffres '4' et avec les huit oppérations suivantes :
{+, -, x, /, ‎ √ , ab, !, 40 }
attention !! entre deux '4' il doit avoir une oppération, donc les écritures '44' , '444' , ... sont interdites
'
23 = 8
5! = 5.4.3.2.1 = 120
40 = 1

exemple:
3 = (4 + 4 + 4)/4
7 = (4 + 4) - (4/4)
.....

Voici la liste des 73 ordres que peut prendre une formule.
LE BUT : exprimer ces ordres en quatrix

1, 2, 3, 4, 5, 6, 7, 8, 9,
10, 11, 12, 14, 15, 16, 18,
20, 21, 22, 24, 28,
30, 33, 35, 36,
40, 42, 44, 45, 48,
55, 56,
60, 63, 66,
70, 72, 77,
80, 84,
90, 99,

105, 110, 112, 120, 126, 132, 140, 144, 154, 165, 168, 180, 198,
210, 231, 240, 252, 280,
315, 330, 336, 360,
420, 462, 495,
504,
630,
720,
840,
990,
1260.
----------
73 ordres
----------
Image

Avatar de l’utilisateur
Morphocode
Crazy
Crazy
Homme
Balance
Messages : 784
Inscription : Lun 25/11/2013 17:06
Localisation : Paris
Contact :

Re: Les ordres des formules et les quatrix

Message non lupar Morphocode » Dim 16/05/2021 17:58

J'ai déjà trouvé un certain nombre, mais pas tous ... et je complèterai au fur et à mesure que je trouve.


1 = (4 + 4)/(4 + 4)
2 = (4 + 4) - (4 + √4)
3 = [(4 + 4)+4]/4
4 = [(4 + 4)-√4]-√4
5 = [(4 + 4)+√4]/√4
6 = (4 + 4) - (4 - √4)
7 = (4 + 4) - (4/4)
8 = (4 + 4)(4/4)
9 = (4 + 4) + (4/4)
10 = (4 + 4) + (4 - √4)
11 = [(√4 + 4!)-4]/√4
12 = [(4 + 4)+√4]+√4

14 = (4 + 4) + (4 + √4)
15 = [(4 + √4)+4!]/√4
16 = (4 + 4) + (4 + 4)
18 = (4 + √4) + (4!/√4)
20 = (4 + 4) + (4!/√4)

21 = 4! - 4 + 4/4
22 = (4 + √4) + (4x4)
24 = (4 + 4) + (4x4)
28 = (4 + 4) + (4! - 4)
30 = (4 + 4) + (4! - √4)

33 = [√√(√44!)+√4]/√4
35 = [(4! - √4)/√4]+4!
36 = (4 + 4) + (4 + 4!)
40 = [(4 + 4)+√4]4

42 = (4x4) + (√4 + 4!)
44 = (4 + 4!) + (4x4)
45 = [√4-√√√(√4-4!)]4!
48 = (4 + 4)(4 + √4)
Image

Avatar de l’utilisateur
Morphocode
Crazy
Crazy
Homme
Balance
Messages : 784
Inscription : Lun 25/11/2013 17:06
Localisation : Paris
Contact :

Re: Les ordres des formules et les quatrix

Message non lupar Morphocode » Dim 16/05/2021 18:40

55 = [(4 + 4!)√4] - 40
56 = (4 + 4) + (√4x4!)

60 = [(4 + 4)√4] - 4
63 = √√(√44!) - (4/4)
66 = (4 - √4) + √√(√44!)

70 = (4 + √4) + √√(√44!)
72 = (4 + 4) + √√(√44!)
77 = [(4 - 40)^4] - 4

80 = [(4 + 4!)√4] + 4!
84 = [(4! - 4)4]+4

90 = (4x4!) - (4 + √4)
99 = [4+√√√(√4-4!)]4!
Image

Avatar de l’utilisateur
Morphocode
Crazy
Crazy
Homme
Balance
Messages : 784
Inscription : Lun 25/11/2013 17:06
Localisation : Paris
Contact :

Re: Les ordres des formules et les quatrix

Message non lupar Morphocode » Dim 16/05/2021 18:50

105 = [(4 - 40)^4] + 4!

110 = 4(4!+4) - √4 :oui:
112 = 4x4! + 4x4
120 = (√4+√4 + 4/4)!
126 = (44/√4) - √4
132 = (4 + √4)(4! - √4)
140 = [(4 + √4)4!] - 4
144 = 4x4! + 4! + 4!
168 = [(4 + √4)4!] + 4!
180 = (√4+√4+√4)!/4

210 = [(4!+4)/4]!/4!
231 = (4^4) - (4! + 40)
240 = 44 - 4x4
252 = 44 - √4 - √4
280 = 44 + (√4 + √4)!

336 = (4 + 4!)(4!/√4)
360 = [(4x4)4!] - 4!

462 = (4! - √4)! / (4! - 4)!

504 = (44 - 4)√4
720 = (√4 + √4 + 4/√4)!

840 = (4+4)! / (4!+4!)

1260 = [(4!+4)/4]!/4 ===> il vraiment étonnant que l'ordre maximal est un quatrix !!!

Il nous reste 8 à trouver: 165, 198, 315, 330, 420, 495, 630, 990. :`-( :`-(
Image

Avatar de l’utilisateur
Morphocode
Crazy
Crazy
Homme
Balance
Messages : 784
Inscription : Lun 25/11/2013 17:06
Localisation : Paris
Contact :

Re: Les ordres des formules et les quatrix

Message non lupar Morphocode » Sam 22/05/2021 11:33

Un complément sur les quatrix

Rappel la définition :
Un quatrix est un nombre qui s'écrit avec quatre chiffres '4' et les 8 opérations suivantes E = { +, -, x, /, √, ab, !, 40 }

Rappel
√4 = 2
23 = 2x2x2 = 8
5! = 5x4x3x2x1 = 120
40 = 1

NOTE:
-Les parenthèses '(', ')' et les crochets '[', ']'' sont autorisées , c'est juste pour la visibilité des lectures.
-Les écritures 44, 444, 4444, ... ne sont pas autorisées.

Justification de l'opération 40 :
Les opérations { +, -, x, ab, ! } applique sur le chiffre '4' donne un nombre pair , ce qui fait que pour former un nombre impair est plutôt dificile 2/7 de chance, c'est pour équiliber cette chance on veut ajouter une 8ème opération qui forme le 1 avec un seul '4'.

Il y a plusieurs candidatures:
1) [x] partie entière de x : ==> [√√4] = 1
2) Γ(n) = (n-1)! la fonction gamma : ==> Γ(√4) = (2-1)! = 1! = 1
... etc ....
Pour nous c'est simplement 40 = 1
Justification:
on a
√√√4 = (4)1/(2^3)
√√... √√√4 = (4)1/(2^n) ; il y a n '√'
donc à la limite on aura:
... √√√4 = (4)0 ; puisque 1/(2^n) tend vers zéro 0 quand n tend vers ∞

On pose: ...√√√4 = 40 , donc 40 est une sorte de limite , une suite infinie d'opération √

On a une formule très étonnante, tout entier n s'exprime avec quartre '4' et le 'log' !!
Image
où √√... √√√ = n '√' (n racines carrées)

Il est remarquable que i, π et ϕ (nombre d'or) sont des quatrix !! en effet
Image
Image
Image



Vous trouverez un javasript pour les quatrix .::ICI::.
https://fan2cube.fr/mathsotop/quatrix/quatrix.js
https://fan2cube.fr/mathsotop/quatrix/quatrix.html
Image